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Abstract The radius exponent of two- and Ulree-dimensional self-avoiding walks and branched 
polymers are computed in the fixed-scale transformation framework. The method requires the 
howledge of the critical fugacity kc, but from this non-universal parameter it is possible to 
compute the univenal critical exponent. The results obtained are within 1% of =act or numerical 
values. This m n h s  the venatiliv and quantitative power of this new theoretical approach 
and gives the opportunity to provide a discussion of the analogies and differences benveen the 
mal space renormalization gmup and the fixed-scale transformation method. 

1. Introduction 

Scaling concepts and renormalization group ideas have been applied with increasing efforts 
and stimulating successes in describing the critical properties of polymers [l-31. There are 
two main different classes of polymers: linear and branched. In the presence of a good 
solvent the statistics of long and isolated linear molecules is equivalent to the statistics of 
a self-avoiding walk on a lattice (SAW). If the constituent monomers have three or more 
functional groups, branched molecules can form and the statistics of such polymers is more 
complex and usually described by lattice animals (LA) models. These systems have the 
asymptotic properties of self-similarity when considered at their critical point, i.e. in the limit 
of infinitely long chains. Here the aggregates can be geometrically characterized by a fractal 
dimension D. The fixed-scale transformation (FST) 141. is an analytical approach to fractal 
growth problems. This method focuses on the distribution of elementary configurations 
appearing in the fine- (coarse-) grained description of the process. For this distribution an 
iterative transformation is derived on the basis of the dynamical growth rules at a given 
fixed scale. Even if originally conceived as an approach to dynamic growth problems, FST 
can be adapted to the study of equilibrium critical phenomena l i e  percolation [5].  When 
considering critical equilibrium problems, and specifically linear and branched polymers, in 
a grand canonical context, the self-similarity of the systems is automatically guaranteed by 
fixing the step fugacity at its critical value. The fact that the critical properties of linear 
and branched polymers are relatively well known gives us the opportunity to understand 
more deeply the analogies and the differences between the real-space renormalization group 
(RSRG) and FST approaches. In this context the FST results can be compared with either 
exact or extremely accurate estimates by several methods [6-91. Our best estimates of the 
correlation length exponent for two- and three-dimensional SAW and for LA, are always 
within 1% of the expected values. These results show a good convergence with schemes of 
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calculation of increasing complexity. This suggests that the agreement is not coincidental 
as may often be the case in real space renormalization group approaches. 

The paper is organized as follows: in section 2 the FST method is schematically reviewed 
and rephrased in view of its application to critical equilibrium problems; in sections 3 and 
4 we p e n t  the application of this analytical approach to two- and three-dimensional SAW 
and to lattice animals; section 5 contains the summary and the discussion of the resuIts. 

2. The fixed-scale transformation for critical equilibrium problems 

The FST approach has been developed with fractal growth problems such as DLA and DBM 
[lo, 111 in mind: i.e. for intrinsically non-equilibrium models. However, this method can 
also be applied to the fractal description of equilibrium problems such as percolation and 
king and Potts clusters [12]. The FST method starts with the identification of the elementary 
configurations necessary to define the coarse- (fine-) graining process. Here the intersection 
of the fractal structure with a line perpendicular to the growth direction is considered. 
For the study of equilibrium fractal structures, this direction is arbitrarily chosen. We 
conventionally refer to this direction as the ‘growth’ one. For the fractal structure embedded 
in two-dimensional space the elementary configurations are two. In fact, decreasing the 
scale of a box by a factor two, each occupied box is divided in two sub-boxes: the type 
one configuration consists of one occupied sub-box and an empty one, and the type-two 
configuration has both sub-boxes occupied. The probabilities of occurence in the process of 
fine graining of these configurations are indicated by C1 and Cz respectively. The average 
number of occupied sub-boxes appearing at each level of fine grzining from one occupied 
box is given by 

(n) = znici = CI + 2cz 
i 

where ni is the number of occupied sub-boxes in the corresponding configuration. The 
fractal dimension of the aggregate can be directly related to (n) by the relation: 

The problem is to define the asymptotic distribution of the Ci. In this respect we have 
to define an appropriate iterative transformation and study its fixed point. The FST can be 
thought of as an equation of motion for (n) in the ‘growth‘ direction ‘y’, that is, the rate of 
change of the Ci in this direction. Using the translational invariance of the fractal properties 
of the structure as revealed by fine graining, we search for the fixed point (d(n)/dy = 0) 
of the equation of motion. The FST matrix elements (Mi , j )  are the conditional probabilities 
that link the distributions CI and Cz of an intersection set to the next ones in the growth 
direction. The renormalization group would be based on the property of invariance with 
respect to a change of scale, whereas the fixed-scale transformation is based on the property 
of invariance with respect to the dynamical evolution at the same scale. The fixed point 
equation is 
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In order to define these matrix elements it is necessary to specify the boundary 
conditions. Different boundary conditions give rise to different values of the elements Mi, j .  
In this case the Mi, j are defined as the average of matrix elements evaluated with different 
boundary conditions. In order to include the fluctuations of these boundary conditions it is 
necessary to know the probability P(A) [4] that the pair of sites corresponding to the initial 
configuration ‘i’ has a void of size ,I as a neighbour. The averaged matrix element becomes 

(4) 

To compute the matrix elements Mi,j we should consider all the graphs linking the 
occupied sites in the initial cell to the sites of the next cell in the ‘growth‘ direction. In 
fractal growth phenomena the weight of each graph is ‘history dependent’, in the sense 
that it depends on the order in which growing bonds construct the graph. Instead, dealing 
with equilibrium phenomena, the matrix elements Mi,j only depend on the configuration 
(number of occupied bonds). Therefore the maixix elements are evaluated with a purely 
geometric approach based on the equilibrium properties of the model considered, where 
each connected configuration is characterized by its equilibrium statistical weight. In the 
statistical description of these equilibrium critical phenomena we use the grand canonical 
formulation where polymers of the same number of monomers have equal weights [3,13]. 
The grand canonical partition function is given by 

(5) 

Here QN denotes the number of different shapes of size N in a given lattice, and k is 
the analogue of the thermodynamic’monomer fugacity. The weight QN is different for SAW 
or LA. For SAW there is the constraint that each walk can not intersect itself, while for LA all 
connected clusters are considered. When k is equal to k, there is no characteristic cluster 
size and we are at the critical point. Here we define as cluster the connected configurations 
of monomers. The average end-to-end distance, or the average gyration radius in the grand 
canonical formulation, diverges, for k + k;, as 

where U is a universal critical exponent. The analogy of the above relation to thermal phase 
transitions motivates the definition of U as the polymer critical correlation length exponent. 
In the limit k + k; we can also write 

( N )  (7) 

Since in a self-similar structure we can define the fractal dimension through the relation 

( N )  - tD 
the exponent U can be relate& to the fractal dimension of the critical cluster [ 141 by 

1 
D = - .  

V 

This relation makes clear the connection with the fractal nature of the problem. 
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3. Self-avoiding walk in two and three dimensions 

A SAW on an infinite lattice is a walk starting at a seed site and continuing by taking 
successive steps in a randomly chosen direction but avoiding its past track. In order to 
study the critical behaviour of polymers by the FST we will use the relation (9) between the 
fractal dimension D and the critical exponent U. We use the SAW grand canonical description 
defined in the preceding section and therefore the iterative scheme of the FST method has 
to be applied at the critical point, where the self-similarity is ensured. From a statistical 
point of view this implies k = k,. In this way the critical fugacity, a well known quantity 
from numerical simulations, will be the external input to obtain the critical exponents from 
the FST theory. The two-dimensional SAW on a square lattice, given its simple topology, is 
the easiest model to be studied within the FST approach. The definition of the model allows 
identification of only one ‘growing’ point. In order to apply the FST we need to evaluate 
the conditional probability that starting from a configuration of type ‘i’, a configuration 
of type ‘j’ follows in the ‘growth‘ direction. Following the scheme introduced in [4] 
we start with a configuration of type ‘7. Consider all the possible ‘growth’ configurations 
inside the column on top of the initial frozen cell that lead to a configuration of type ‘j’ (see 
figure 1). We have to ensure the infinite connectivity of the critical configuration [5 ] ,  i.e. the 
starting configuration must be connected to a line at a certain distance, now corresponding 
to the order of the calculation. In figure 1, where a second-order calculation is shown, the 
line is the upper broken line at the distance of two lattice constants. We consider only 
the configurations inside the column because we are only interested in relative probabilities. 
However, this may become an over-simplification if we attempt very high-order calculations. 
The evaluation of the Mi,j elements is simplified for SAW because the Mj,j will be equal 
for all ‘i‘ at fixed 7’. In fact, at this level of approximation, there is just one ‘growing’ 
site and the boundary conditions for the ‘growth‘ column are irrelevant because closed 
boundary conditions never appear. In the grand canonical formulation, each configuration 
has a statistical weight given by kc to the power of the number of bonds in the configuration. 
From these weights we can compute the normalized probability of each growth configuration. 
For example in figure 1 we have a statistical weight k,’ for the first configuration and kz 
for the second one. It follows that the normalized conditional probabilities of the growing 
configurations are 
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By using the critical fugacity kc = 0.379 [7] and (2), (3) and (9), we obtain 

= 0.740. 

F i  1. Secondader configurations for the twc-dimensional 
SAW. The diagrams are connected up to the broken line 
corresponding to calculation order. We always use configurations 
identified by occupied bonds. 
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This result is already in excellent agreement with the exact value U = 0.75. Nevertheless 
we perform a thud-order calculation to test the convergence of the methcd. In figure 2(a) 
the corresponding elementary 'growth' configurations are reported. The connectivity is now 
enforced up to the thii line. Considering only growth within the column could be an over- 
simplification. Thus, we also take into account processes outside the column of growth that 
lead to the visitation by the SAW of a site within the column (figure 2(b)). These 'external' 
configurations are chosen by considering the configuration along the 'lateral border' (see 
figure 2(b)) of the column which are up to one order greater in kc with respect to the 
internal configurations. Using these prescriptions the calculation becomes comparable to 
the open-closed FST scheme. Note that in the RSRG approach [15, 161 taking into account 
extra configurations would amount to enlarging the basic ceIl and to a higher computational 
complexity. On the other hand, in our scheme we can try to systematically test the influence 
of these contributions. Developing the calculation as outlined before we obtain for the matrix 
elements 

and from (2), (3) and (9) for the critical exponent 

Y ( ~ - ~ ~ ~ )  = 0.745, 

--..*. ..... ~ _ _ _ _ _ _ _ _ _ _ _ _  .............................. i s  2 151 
0 :  

._L ..... - 5  ...... 

' 0 :  

: 0 ;  

A 
...... 2 L ..... 2 .... 

j 0 ;  

Figure 2. (U) Diagrams connected up to thud order for the two-dimensional SAW. (b) New 
WnFlgurations corresponding to the relevant processes outride the growth column. It is worih 
remarking hat the statistical weights of these external wnfigurations are comparable with those 
of iatemal configurations. This is not the case in the second-order calculation. 
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We have also developed the fourth-order calculation, for which we report only the final 
result: 

y(lV-Order) = 0.746. (15) 

These results c o n h  the convergence of the method and its accuracy in evaluating the 
critical exponent. The relative simplicity of this model allows an important check of the 
whole FST method. In section 2 we have seen that the FST scheme of calculation depends 
on the choice of the elementary configurations considered. Instead of the two-site starting 
cell, corresponding to the simplest generators, let us consider a threesite starting cell. The 
FST results clearly should depend as little as possible upon this choice. By using a three-box 
fragmentation scheme, the number of elementary configurations becomes five. In typeone 
and -two only one site in the central and lateral position, respectively, are occupied. In 
type-three and -four occupations and vacancies are reversed. In typefive all the sites are 
occupied. The Mi., matrix is now a 5 x 5 matrix. In the SAW application this matrix has 
only five different elements (Mi,j = M I J ,  Vi, j ) .  Performing the calculations as before we 
found, at third order, U = 0.742. This result is practically the same as the one obtained 
with two elemenmy cells and confirms the independence of the FST from the choice of 
cell to which the elementary configurations refer. It is straightforward to generalize the 
approach of the previous section to the case of the three-dimensional self-avoiding walk 
[I-31. The model is defined on a cubic lattice in which the walker can randomly move. 
This model mimics the statistical behaviour of a polymer embedded in three dimensional 

, space. Here too we have a critical step fugacity, in the grand canonical formulation, at 
which the self-similarity of the walk is ensured. Now, the intersection of the shucture with 
a plane is considered and the box covering is done with squares of edge L. During the fine 
graining we further subdivide each of these boxes into four sub-boxes of edge L/2. The 
possible resulting configurations are five, each one with the corresponding multiplicity due 
to non-equivalent rotations [171. The average number of occupied sub-boxes generated in 
the fine graining process is 

(16) 

The fractal dimension is then given by the relation (5). Here the property of the SAW of 
having only one growing site leads to a great simplification in the calculation. The evaluation 
of the matrix elements is done along the lines of the two-dimensional calculation. In the 3D 
case we have to look at all the configurations in the 3D column above the starting 2 x 2  frozen 
basic configurations of four sites. Here too we must ensure the connectivity appropriate 
to the chosen order. We report in figure 3 an example of configurations contained in 
the 'growth' column. Up to the second and thud order of calculation we find, using 
kc = 0.2135 [9], 

(n )  = 4c5 + 3c4 + 2c3 + 2cz + c1. 

In the third-order calculation we did not consider walk configurations external to the 
growth column. These configurations, in the 3D case, are not longer negligible. In fact, 
due to the higher coordination number of the lattice, we have a great number of external 
walks with weights comparable to that of the internal ones. Including these configurations 
the final result is 

y(u-Ordcr) = 0.593, (19) 
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Figure 3. One example of configuration for the three-dimensional 
SAW. Here the diagrams must be COMWXKI ta a plane at a distance 
corresponding to the order of calculation. 

The great improvement of agreement (1%) with the numerical value of v = 0.588 [9] is 
mainly due to the fact that most of the external contributions increase the global statistical 
weight of the conditional probabilities Mi,l and Mi.2. The fractal dimension rises up and 
the critical exponent v decreases. So, also in this case, we can evaluate the contribution 
due to external configurations and improve the convergence towards the expected result 
Moreover the appreciable contribution of these external configurations gives an indirect 
but clear indication of why leal space renormalization group calculations do not show 
convergence for the 3 0  SAW unless very large cells are used. 

4. Branched polymers 

Branched polymers have the same critical properties as lanice animals. The scheme of 
calculation for L A  is quite different from that for the SAW. In this case the configurations 
may branch, may have loops and the growing site may not be unique. This complication 
leads to the need of introducing the fluctuations of the boundary conditions and of setting 
up the full scheme of the FST framework. Using open boundary conditions we have to 
consider at second order, the configurations depicted in figure 4. Following the lines of the 
previous section we have to use k,= 0.191 [6J for the critical step fugacity and to enforce 
connectivity in order to be at the critical point. We use the critical step fugacity of LA 
with loops and for this reason we consider also the looped diagrams in the evaluation of 
the matrix elements. On the contrary, the use of k, relative to LA without 1oops.should 
correspond to the elimination of the closed loop configurations in the calculation. It is 
worth remarking that in the LA case starting with different configurations leads to different 
matrix elements. The normalized conditional probability for growth configurations are, at 
second order, 

where the superscript 'op' means 'open boundary conditions'. Using (3) we obtain the 
critical exponent: 

u"P(I1) = 0.690. (22) 
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X Z  

x 2  x 2  

( 6 )  

Figure 4. Second-order connected diagrams necessaty for the evaluation of the matrix element 
in the case of branched polymers. (a) Configurations starting from a cell of type one. 
(b) Configurations starting f" a cell of type WO. 

We can then perform a third-order calculation enforcing the connectivity up to three 
lattice constants obtaining 

uop(m) = 0.672. (23) 

We can turn now to the analysis of closed boundary conditions [4]. Closed configurations 
correspond to having an extra occupied site on the right of the starting configuration. In order 
to understand the effect of the closed boundary conditions we can consider the diagrams in 
figure 5. In this case one of the sites left empty may be occupied by a branch that originates 
from the occupied sites inaoduced by the boundary condition. The configurations are now 
the sum of those used in the open boundary conditions calculation plus those originated by 
the lateral bond weighted by an extra k factor. In addition there are some configurations 
which did not appear previously where the connectivity is ensured through the boundary 
conditions (see figure 5). These effects were clearly absent in the SAW diagrams. In figure 5 
are drawn some of the new diagrams present in the closed boundary condition scheme of 
calculation. In the 'open-closed' approximation [4] the iterative transformation becomes 
nonlinear in CI and Cz, but again one can write the explicit solution for the fixed point: 

M$ + 2M.$ - $Mi: - (($Mi: - M$ - 2M;f,)z - 4M.&A)"2)/2A (24) 
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Figure 5. Configurations corresponding to closed boundary conditions. In this case one of the 
sites may be occupied by a branch introduced by the boundary conditions. 

pations we obtain 

Y ~ P ~ ~ ' ( I I )  = 0.664 

U ~ P - ~ ~ ( I I I )  = 0.644 

which is in excellent agreement with the numerical result v = 0.641 [6]. Also in this case 
the inclusion of extemal paths, via the fluctuations of boundary conditions, gives the most 
accurate estimate of the critical exponent. 

Table 1. Radius exponent of two- and three-dimensional SAW and lattice animals computed 
with the FST method. The values reported correspond to increacing order of calculation and to 
the introduction of schemes for the inclusion of boundary conditions. Note that the boundary 
conditions treatment refers to the inclusion of the extanal configurations in the SAW models and 
ta the complete open-closed nr scheme for the a. The values obtained are compared with the 
exact or numerid results [6-91. 

~~ ~ 

FST SChellE O f  CdCUktiOn SAW m SAW 3D Laaice animals 

11-order 0.740 0.655 0.690 
III-OrdW - 0.632 0.672 
IlI-aNfer 0.745 0.593 0.644 
(taundarymnditions Ueatment) 
IV-Order 0.746 - - 
(boundary-mnditions tmatment) 
Experimental results 0.75 (exact) 0.588 0.641 

5. Summary and discossion 

The problem of the critical behaviour of linear and branched polymers has been investigated 
with a great variety of theoretical and numerical methods. In table 1 the results of our FST 
approach are summarized and compared with the best existing estimates. As one can see 
from this table the agreement is very satisfactory. The application of the FST method to 
these problems is not only an important test for the approach itself but also highlights the 
difference between this method and the RSRG. In fact, the FST is quite different from RSRG 
not only because it works at a fixed scale, but also because the critical exponents are related 
directly to the fixed point parameters of the models instead of their derivative with respect 
to the relevant critical parameter. The basic new step is therefore that the FST method allows 
one to go directly from the non-universal critical parameter to the universal critical exponent. 
For this reason, in equilibrium statistical problems the FST needs the critical parameter as 
an extemal input. However, this quantity can be calculated by standard methods or even 
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by numerical simulations. On the other hand, given the critical parameter, the FST uses a 
fixed number of basic configurations (no proliferation) and allows one to take into account 
degrees of freedom extemal to the growing cell (in our case the external configurations) 
in a systematic way at a very low computational cost. The inclusion of growth processes 
outside the considered column up to the desired order and fluctuations of the boundary 
conditions are particularly relevant in the treatment of this type of problems and gives great 
accuracy in the numerical estimates. The simplicity and richness of the models used in this 
paper to describe polymers allowed us to stress and clarify all these essential points of the 
FST method and to focus on its basic differences from the theoretical approaches based on 
renormalization group ideas. 
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